Differences between revisions 10 and 11
Revision 10 as of 2012-12-07 16:20:21
Size: 9712
Editor: ev
Revision 11 as of 2012-12-07 16:28:58
Size: 9798
Editor: ev
Deletions are marked like this. Additions are marked like this.
Line 53: Line 53:
 * Need to sort out ~canonical not working with SSO in first ([[|1073466]])
 * Web UI restricted to ~core-dev.
 * Need UI for peer review system.
We will soon restrict access to sensitive information on to just ~canonical-ubuntu-platform ([[|1087361]]). It logically follows that the interface for modifying server-side hooks will also be restricted to this set of users.


What does a developer do when a stack trace is not enough to completely debug an issue? They could find a user who is experiencing this problem and contact them, asking them to provide additional information. This is very time consuming and fraught with long delays.

A developer should be able to identify an issue that needs additional information, write a small amount of code to collect additional details on a system exhibiting the problem, and quickly get that run on such systems. This code should require no human interaction and should report back quickly, notifying the developer when there is something actionable.


Both and are signed with the Ubuntu certificate from Go Daddy. This certificate is included by default in the ssl-certs package.

Whoopsie needs to check that the SSL certificate matches. There is a strict checking option in libcurl for this. With that in place, downloading and uploading should be safe.

We will restrict the set of users who can create new hooks to the members of ~core-dev. In the future we can expand this by querying the Launchpad ACLs for the per-package upload rights and match these to the respective binary packages in the Error Tracker.

Peer review

Pressure is often put on developers to fix issues urgently and sometimes they rush changes out. Poorly-coded hooks have the potential to consume system resources in a manner that adversely affects the user experience.

New package hooks or changes to existing ones will require review from at least two other core developers.


Reporting errors in Ubuntu is simple by design.

If the dialogs were particularly complex or if they asked a series of questions, users would be less willing to work through them to submit reports to us. One bad dialog will leave a lasting impression that will make users hesitant when prompted the next time.

Interactive questions are also more often than not poorly worded for the audience. A current sampling of apport package hooks includes: "Apport has detected a possible GPU hang. Did your system recently lock up and/or require a hard reboot?" "It seems you have modified the contents of /etc/cups/cupsd.conf. Would you like to add the contents of it to your bug report?"

Because there is no guarantee that an Internet connection is available at the time of a crash, apport collects what information it can and hands the error reports off to whoopsie to be sent when possible. It is from this point that interactivity stops. If an internet connect appeared even just a few moments later it would already be far too late to ask the user additional questions. Anything more than 10 seconds would be unreasonable.


Some package hooks will need to be able to attach files not normally viewable by a regular user or attach the output of a command as root. xorg needs to attach the contents of /var/log/lightdm. update-manager needs to attach the current dmsesg. Plymouth needs to attach /var/log/plymouth-debug.log.

At present, apport uses pkexec to present a password dialog in these cases. While this is an improvement over the previous gksu-based implementation in that it allows us to set more password dialog text, providing some context as to why the user is suddenly seeing this dialog, it is still abrupt.

This presents an interesting problem.

We cannot wait until the hook is run to show these authentication dialogs. It will likely be far more than 10 seconds after the initial error dialog was presented, and could be hours or days later, depending on when the user next connects to the Internet.

One option is to map attach_root_command_outputs to a new com.ubuntu.apport.package-hook PolicyKit permission that is granted to the whoopsie user. While this means the hook mechanism is able to run remote code as root, it is restricted to code from the same group of developers that can modify maintainer scripts in all of the Ubuntu packages (~core-dev). Still, users can run apt in --download-only mode and review the code to be run before installing a package. They cannot review a server-side hook before running it.

For the time being, we will limit hooks to only running with regular user permissions.

We will need to find a way for whoopsie to run code as the user the crash occurred for, or grant sufficient permissions to whoopsie so that it can access the user's files. Whoopsie will need to be able to write to the reports in /var/crash.

Web interface


We will soon restrict access to sensitive information on to just ~canonical-ubuntu-platform (1087361). It logically follows that the interface for modifying server-side hooks will also be restricted to this set of users.


  • Per-problem hook (by SAS). How do we map all the SASes to the signature?
  • Package level hook
  • We're purposefully leaving out global, problem type-specific hooks for now as these should ideally live in the apport package.

Keeping existing hooks for ubuntu-bug

  • Fix bug whereby existing hooks are running on released versions (1084979)

  • Keep daisy hooks on the apport-gtk path, run existing hooks on ubuntu-bug path
  • SRU whoopsie and apport for server-side hook changes


  • quantity (if we received this 10 times, stop)
  • timeout (it is still running code, so after a week stop collecting)
  • Both quantity and timeout are editable fields with upper bounds
  • not-editable disk size upper bound (hooks can only include X MB)
  • Disable the hook once it hits the upper size bound. If the hook hits this while receiving data from the client, drop the connection and disable the hook.
  • We also need a disk upper bound on the client side, just in case. 50MB or so?

How do we get the reports with these fields?

  • They'll live in the HookResults CF. Needs to refer back to the original OOPS.

  • We need to be able to surface these on the problem page
  • Can be done as an API first for expediency
  • Daisy and the client pass a token back and forth and that token gets mapped to the correct bucket ID.
  • We need a way of seeing just package hook results. Deferred discussion until Matthew gets here.
  • Hook this into the alerts system as well. Notification when a report comes in with that information.

Delivery mechanism

Provide a list (BSON) of URLs to the individual hooks. It doesn’t need the package name or the bucket ID because it already has those locally.

We send to the client with a token that maps to the bucket. In the simple case this would be the Crash Signature that the SAS maps to. We still need a SAS to Crash Signature mapping so we can tell the right clients to get the specific hook for a crash signature.

Release specific hooks?

Restrict to a particular release upfront?

No, package hooks should check the DistroRelease field, when needed. Maybe DistroRelease checking should be in the web UI template for the hooks (if DistroRelease == ‘Ubuntu 13.04’:)


If there is time in the initial implementation, we should evaluate using compression for the increasingly large amount of data transfered between whoopsie and daisy. Candidates for this are snappy and zlib. xz could also be considered if we keep decompression time low on the server.

We should work with the webops team on this, as they may have strong opinions on the implementation. We will only get a few instances of this extra information out of the 100,000 reports we receive a day, given the limits we're putting on size, so this shouldn’t overload us.


Whoopsie gets a few hooks, downloads them, runs them with the python-apport code to update the report, sends the new keys in the report back (not any existing or modified), report gets written to the HookResults CF

Error handling

If a hook fails, the exception from the hook will be sent as a new field along with the other fields generated by the hook up until the point of failure. Daisy will write these into the new HookResults Column Family to indicate a failure of that hook.

Failed hooks will send an alert to the hook creator via SMS (mup) or email.


A new page will be added to that provides a report of hook usage.

This will include:

  • Active hooks with their expiry date. For each of the hooks, the number of reports received and the size of data transmitted so far will be included.
  • We will also record by day hook usage statistics (active, inactive, working, failed) to determine whether or not the hook mechanism is actually being used and working.

Test mechanism

Script to make testing a new hook against a local system or canonistack system easy

Launchpad bugs

A new checkbox is added in the server-side hooks UI for “Get someone to file this on Launchpad”. This is checked by apport via an api on daisy, where it asks if we want LP bugs for the SAS for which the report is about. If the answer is yes, then we create a LP bug with a specific tag that crash-digger is looking for and the SAS (attachment?). Crash-digger then finds this, looks up the SAS in and gets the crash signature back. It then writes the URL for that bucket into the bug and tells daisy to send off a notification that the server-side hook now has a LP bug. (and updates the BugToCrashSignatures CF)

This will let us mostly turn off retracing of Launchpad crashes.

ErrorTracker/ServerSideHooks (last edited 2013-07-24 15:46:20 by ev)