
1

ARMv7A
Architecture

Overview

David A Rusling, ARM Fellow

May 2010

2

Overview

 ARM
 Some history

 How we do architecture

 ARMv7A features
 Thumb 2

 TrustZone (?)

 Neon

 SMP

 Atomic memory operations

3

ARM and Architecture

4

Definition of Architecture
 The Architecture is the invariant contract between the Hardware and the

Software
 Confers rights and responsibilities to both the Hardware and the Software

 The architecture distinguishes between:
 Architected behaviors:

 Must be obeyed
 May be just the limits of behavior rather than specific behaviors

 Implementation specific behaviors
 Allows degrees of variability to fit the implementation requirements

 Defines the space in which to innovate for performance (or power or
area)

 Certain areas are declared implementation specific. E.g.:
 Power-down
 Timing behaviors of the memory map

 Code obeying the architected behaviors is portable across implementations
 Reliance on implementation specific behaviors gives no such guarantee

5

How do we “do” architecture

 Team of full time staff manage the architecture

 Formal internal review body – ARB
 Responsible for sign-off of changes to the architecture

 Represent all interested parties – software, tools, etc

 Development of new architecture
 R&D – scope, shape, viability, initial specification

 APD – ‘bake’ ready for the implementation teams

 Implementation – go build and deliver it (and ‘it’ includes tools, OS
ports, middleware etc)

 Internal and External consultative bodies
 AAG (internal) and TAB (external)

 Ad-hoc communications

6

Evolution of the ARM Architecture

 Original ARM architecture:
 32-bit RISC architecture

 16 Registers - 1 being the Program counter – generally accessible

 Conditional execution on all instructions

 Load/Store Multiple operations - Good for Code Density

 Shifts available on data processing and address generation

 Original architecture had 26-bit address space

 Augmented by a 32-bit address space early in the evolution

 Thumb instruction set was the next big step
 ARMv4T architecture (ARM7TDMI)

 Introduced a 16-bit instruction set alongside the 32-bit instruction set

 Different execution states for different instruction sets

 Switching ISA as part of a branch or exception

 Not a full instruction set – ARM still essential

7

Evolution of the Architecture (2)
 ARMv5TEJ (ARM926EJ-S) introduced:

 Better interworking between ARM and Thumb
 Bottom bit of the address used to determine the ISA

 DSP-focussed additional instructions
 Jazelle-DBX for Java byte code interpretation in hardware

 ARMv6 (ARM1136JF-S) introduced:
● Media processing – SIMD within the integer datapath
● Enhanced exception handling
● Overhaul of the memory system architecture

 ARMv7 rolls in a number of substantive changes:
● Thumb-2*
● TrustZone*
● Jazelle-RCT
● Neon
● ARMv7 is split into 3 profiles

* - Introduced initially as extensions to ARMv6

8

 The Application “A” profile
 Memory management support (MMU)
 Highest performance at low power

 Influenced by multi-tasking OS system requirements

 The Real-time “R” profile
 Protected memory (MPU)
 Low latency and predictability ‘real-time’ needs
 Evolutionary path for traditional embedded business

 The Microcontroller “M” profile
 Lowest gate count entry point
 Deterministic behaviour a key priority
 Deeply embedded – strong synergies with the “R” profile

ARM Profiles

9

ARMv7: profiles & key features

Application - MMU

ARMv7-A

Real-time - MPU

ARMv7-R

Microcontroller

ARMv7-M

Multi-mode
Exception

Model
Advanced

SIMD
(NEON)

and
VFPv3

ARM
ISA

Stack based
Exception

Model

Thumb®-2
ISA

JIT/DAC
supportCoprocessor

based
system control

Memory
mapped

system control

Security
Extension

(TrustZone)

10

ARMv7A Features

11

Thumb-2: Smaller and Faster

 New instructions mean that:
 Thumb-2 can be smaller than Thumb

 CZB can replace CMP + B[EQ|NE] to reduce code size,
i.e. one new 16-bit instruction replaces two 16-bit instructions

 TBB and IT can replace complex branching structures

 Thumb-2 can be faster than ARM

 Single instruction replaces two instructions

 ORN

 SUB, ADD, LDRH, STRH: immediate ranges changed

 LDRD, STRD: register restriction removed

 Smaller and faster artefacts too:

 Smaller code results in more efficient use of I-cache

12

RVDS 3.0 Thumb-2 on ARM1156T2-S
RVDS 3.0 Thumb-2 on ARM1156T2-S FPGA, 64K Data cache/ 64K

instruction cache

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

50%55%60%65%70%75%80%85%90%95%100%

ROM size compared to ARM Otime

P
e

rf
o

rm
a

n
c e

 c
o

m
p

a
re

d
 t

o
 A

R
M

 O
tim

e

ARM Otime

Thumb-2 Otime

Thumb Otime

ARM Ospace

Thumb-2 Ospace

Thumb Ospace

● Based on real application
data
● 46 benchmarks
● 48 applications
● 9 Mbytes ROM

13

ARMv7: Software Compatibility

 Backward software compatibility is key for customers with
existing software that runs on earlier ARM cores

 Thumb-2 is a superset of Thumb
 A single instruction set architecture (ISA)

 ARM Thumb interworking remains the same

 ARMv7A supports ARM and Thumb-2
 Thumb-2 offers a new freedom on the ARM/Thumb boundary

 Software can be re-used, retargeted to Thumb-2, or a mixture

14

ARMv7-A key features

 Uses the traditional ARM programmers’/exception model
 Supports Monitor mode/the Security Extension
 Hivecs configuration option for exception entry

 Virtual Memory System Architecture
 Supports shared and local memory
 Normal, Device and Strongly ordered memory types
 Configurable cache policy with hierarchical cache operations

(no broadcast operations for MP – coherency maintained with
software)

 Pagetables in memory – entries cached in TLBs

 Enhanced instruction set support over ARMv6
 Updates to barrier and NOP hint instruction support
 ThumbEE state execution
 Advanced SIMD (NEON) option
 VFPv3 option (VFPv2 in earlier architecture variants)

 Debug model refinement

15

 Physical protection
 Physical address space divided between Secure and Non-secure

‘worlds’

 Memory system support for caches and translation buffers

 Tagged resources

 Secure and Non-secure virtual memory managed separately

 Monitor mode supports the Secure Non-Secure
transition
 Boot time configuration

 Transparent for legacy code

 Dynamic reconfiguration of Secure/Non-secure resource allocation
supported by the architecture

 Interrupt model support

ARMv7-A Security Extension

16

Security: TrustZone System

System Peripherals

Normal
Interrupt

LCD
Controller

System
Controller

On-Chip
SRAM

ARM
1176JZ-S

Core

Caches

TCMsETM

ETB

SDRAM
Controller

Tagged Non-
Secure

RTC

AMBA3.0 AXI with TrustZone Support

Level 2 Cache

ROM

 Normal peripherals can be accessed by all bus masters

 Secure peripherals can only be accessed by secure-aware masters (i.e. are “Trusted”)

 Secure-aware slaves have areas that can only be accessed by trusted masters

Customer
-Specific

IP

Tagged
Secure

Secure-
aware

Secure Peripherals

Decoder I/F

Secure
Interrupt

Secure
RTC

Key
Storage

Boot
ROM

17

ARMv7-AR: VFPv3 – Floating Point support

 Builds on VFPv2
 Double precision register count increased from 16 to 32
 Fixed Float conversion instructions

 Signed and unsigned conversions
 Integer value: 16- or 32-bit
 FP value: single or double

 Floating point constant loads

 User traps now an architecture option (VFPv3U)
 A change of emphasis from VFPv2
 Fits in with Advanced SIMD exception-free execution

Trap free operation provides best performance
& best suited to the majority of ARM target markets

18

ARMv7 Advanced SIMD: NEON Technology

 Designed to accelerate multimedia
and DSP applications
 Tightly integrated, separate execution hardware

 ARMv6 SIMD instructions an expansion
of the ARM and Thumb-2 instruction sets
 NEON = complete architecture

with its own register file and pipeline

 Packed SIMD processing

 OpenMAX: industry initiative for media
APIs and associated software support

19

Programmer’s Model

 Single instruction stream

 Single view of memory

 Single debug and trace

 ARM handles control plane
 Loops, branches and function calls

 Address calculation

 Hardware optimised for tight control

 NEON handles data plane
 Integer, Fixed-point and Floating-point processing

 Hardware optimised for high throughput

D

NEONI

Debug/Trace

ARM

20

 NEON Instructions are based on “Packed SIMD” processing
 Registers are considered as vectors of elements of the same data type

 Instructions perform the same operation in all lanes

 NEON adheres very strictly to this model
 Avoids use of “ad-hoc” SIMD instructions

 Enables consistent techniques for mapping algorithms to NEON

Neon SIMD (Single Instruction Multiple Data)

Dn

Dm

Dd

Destination Register

Elements Operation

Source Registers

Lane

21

ARMv7A: Debug

CP14 support introduced in ARMv6
or

Memory mapped support
 More flexible for multiprocessor systems and system level debug

Architected Debug Access Port (DAP)
 Consistent debug programmers model from host for ARMv7

 ‘Coresight’ or CP14 access mechanisms hidden from the debugger

Supports
 Halting debug-mode

 Monitor debug-mode

 Trace: instruction and/or data

22

Multi-processing

 To some extent, ARM has always been in multi-processing
 Common ARM systems typically have a DSP alongside the ARM core

 Communications flows are predictable and manageable in software

 No special hardware for coherency in most ARM systems

 ARM introduced the ARM11MPCore in 2004
 Between 1 and 4 processors in a coherent on-chip cluster

 Optimised “Snoop Control Unit” for coherency traffic

 Silicon available from ARM partners today

 ARM A9 SMP by design, as all future A class cores will be

23

Atomic Memory Operations [1]

 Before ARMv6, SWP instruction was used
 Gave us uninterruptible read and write operations

 Complex memory hierarchies and long memory latencies mean that
SWP causes performance bottlenecks

 ARMv6k (and ARMv7) added load and store exclusives
(LDREX, STREX)
 Principle of a memory monitor (address range varies by

implementation)

 Tags the location in memory with the identity of the agent trying to
modify it

 Exclusive load tags the memory, following exclusive store will fail if
the memory has been accessed by another agent

24

Atomic Memory Operations [2]

 SWP instruction not guaranteed to work in an SMP
implementation

 ARMv7 allows for the SWP instruction to be disabled

 Means that SWP use can be trapped and safely emulated in
the SMP SWP case
 Slow versus data corruption / correctness

25

Backup Slides

26

 Derived from Thumb-2: Thumb-2EE architectural name
 Support mandated in ARMv7-A

 Supports JIT/DAC and AOT techniques:
 JIT = ‘Just in Time’ compiler (real-time)
 DAC = ‘Dynamic Adaptive Compilation’ (real-time)
 AOT = ‘Ahead of Time’ compiler (install or on download)

 Provide a new instruction set that allows for
 JIT compiled code size within 10% of original bytecode
 Equivalent performance to existing ARM or Thumb-2 instruction sets
 Simple and low cost to implement in hardware

 Improved memory efficiency
 ROM, RAM and cache
 Benefits apply to down-loadable applications in RAM as well as those

pre-installed in ROM
 ROM: Compile for minimal code size performance gains from AOT
 RAM: Compile for performance at runtime, by in-lining more frequently

ARMv7 Execution Environment Support (Jazelle RCT)

27

ARM technology lies at the heart
of advanced digital products

	ARMv7A Architecture Overview
	Overview
	Slide 3
	Definition of Architecture
	How do we “do” architecture
	Evolution of the ARM Architecture
	Evolution of the Architecture (2)
	Meeting the challenge with profiles
	ARMv7: profiles & key features
	Slide 10
	Thumb-2: Smaller and Faster
	RVDS 3.0 Thumb-2 on ARM1156T2-S
	ARMv7: Software Compatibility
	ARMv7-A key features
	ARMv7-A Security Extension
	Security: TrustZone System
	ARMv7-AR: VFPv3 – Floating Point support
	ARMv7 Advanced SIMD: NEON Technology
	Programmer’s Model
	Neon SIMD (Single Instruction Multiple Data)
	ARMv7A: Debug
	Multi-processing
	Slide 23
	Slide 24
	Backup Slides
	ARMv7 Execution Environment Support (Jazelle RCT)
	Slide 27

