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● Enterprise-level reliability and durability
○ Migrating away from legacy pre-Prodstack services (CI Lab) while 

increasing their stability and performance, and our responsiveness
○ CI Airline

● Self-service code landing
○ Migrating from CI Train to CI Airline
○ Increase your development velocity by lowering reliance on the LTF 

for paperwork tasks
○ Empowering LTF to focus more on the grey areas (blaming and 

coordinating response)
● Readiness for growth

○ Hardware profiles increasing
○ Types of software testing increasing
○ Need to retain architectural simplicity

● Adaptability
○ CI needs often change with time and vary by department
○ Need a lego-brick approach

Functional goals



● Development involvement
○ Open staging deployment makes evaluating the next generation easy 

and provides an avenue to giving feedback on our approach
○ Having the same people support (Vanguards) and develop the 

software makes us acutely aware of your problems
● Unambiguous communication

○ Vanguard shifts ensure there is one obvious point-of-contact for the 
CI team at most times

○ Team-specific Asana projects and dedicated CI representatives let us 
work directly with you without all the noise from our other efforts

● Frictionless experimentation
○ An easily reproducible stack means you can easily debug issues up 

through CI without requiring access to the production system
○ You have the same tools and access to add new features that we do. 

Add some cloud credentials and you have all the resource you need
○ The architecture fits in your head. No need to understand all 

components

Stakeholder goals



Architecture

Writing a Continuous Integration system is not hard.
Writing one that does not grow into an operational nightmare is.

● Atomicity
○ Every step progresses a ticket or has no effect

● Automatic failure isolation
○ A failing ticket is automatically moved onto other hardware until it’s 

programmatically determined to be the source of failure
● Resilience to failure

○ All worker components are ephemeral
○ Work continues as far as it can, then sits patiently until missing 

services return without needing a manual “retry”
● Graceful degradation

○ Services are isolated by responsibility
○ You can still see your ticket and its artifacts, even if we lose 

everything but the web interface, ticket system, and Swift
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List of requirements that have been completed

● CI Train on Prodstack
● Inline comments in Launchpad MPs
● Operational response improvements

○ Instant text message alerting of operational problems
○ Vanguard shifts provide a single POC for the CI team stakeholders

● Operational stability improvements
○ Nagios checks, Landscape, ksplice, centralised auth, centralised DNS, etc
○ Growing consistency in our servers (OpenID auth, single Jenkins version)

● Testing of Oxide (chrome content API) on Prodstack
● Kernel team backlog (health check, power, suspend blocker, etc)
● Test time improvements through parallelisation (~4:10 -> ~1:50)



14.10 Goals

● Deprecate the Train
● Build the emulator into our core process
● Move towards a continuous delivery model for CI 

development; high velocity without sacrificing quality
● Allow stakeholders to start experimenting with 

tomorrow’s tools today
● No poisoned tickets or lost time to CI
● Deep metrics into both the functional and human side 

of the CI process
● Drop-in scale out of many different hardware profiles 

(plug in a phone -> done)
● Get all non-testbed hardware out of the Lab and onto 

Prodstack (or IS-managed)



Testability Requirements

Unit testing
● Comprehensive unit test suite gating every merge

Integration testing
● Growing set of full-deployment integration tests running four times per 

day on trunk
● End-to-end ticket integration test in progress

In-production testing
● Some basic Nagios checks
● Nagios suite growing to cover deeper exercising of the Airline
● Production metrics support landing before Malta

In-production chaos testing
● Plan to prove we can recover from a wedged phone by sending a malicious 

ticket to production once a day



Risks and challenges

● Emulator gaps
○ We don’t yet have a complete picture of where the emulator is not a 

suitable replacement for a physical phone
○ Need to always finish testing on the phone to catch emulator bugs

● Unknowns in MAAS
○ We’re the first team to try to use it like this

● Nested KVM
○ We’re going to use MAAS to manage x86 Touch emulators on real 

hardware. Think of it as a cloud of virtual Touch devices
● Prodstack deployment

○ Need to mentally transition from having shell access to all services to 
building services that report problems well and collect sufficient 
debugging information


