
Legacy

s-jenkins

q-jenkins

ci-train

Merge 
Proposal

Release
Archive

touch 
devices

build 
slaves

PPA
PPA

PPA
PPA

build 
slavesbuild 

slaves

coreapps 
jenkins

build 
slave

test 
slavestest 

slavestest 
slaves

test 
slavestest 

slavestest 
slaves

test 
slavestest 

slaves

adb host

MP 
Testing

Image 
Testing

MP 
Landing

MP 
Testing

Dashboard



● Enterprise-level reliability and durability
○ Migrating away from legacy pre-Prodstack services (CI Lab) while 

increasing their stability and performance, and our responsiveness
○ CI Airline

● Self-service code landing
○ Migrating from CI Train to CI Airline
○ Increase your development velocity by lowering reliance on the LTF 

for paperwork tasks
○ Empowering LTF to focus more on the grey areas (blaming and 

coordinating response)
● Readiness for growth

○ Hardware profiles increasing
○ Types of software testing increasing
○ Need to retain architectural simplicity

● Adaptability
○ CI needs often change with time and vary by department
○ Need a lego-brick approach

Functional goals



● Development involvement
○ Open staging deployment makes evaluating the next generation easy 

and provides an avenue to giving feedback on our approach
○ Having the same people support (Vanguards) and develop the 

software makes us acutely aware of your problems
● Unambiguous communication

○ Vanguard shifts ensure there is one obvious point-of-contact for the 
CI team at most times

○ Team-specific Asana projects and dedicated CI representatives let us 
work directly with you without all the noise from our other efforts

● Frictionless experimentation
○ An easily reproducible stack means you can easily debug issues up 

through CI without requiring access to the production system
○ You have the same tools and access to add new features that we do. 

Add some cloud credentials and you have all the resource you need
○ The architecture fits in your head. No need to understand all 

components

Stakeholder goals



Architecture

Writing a Continuous Integration system is not hard.
Writing one that does not grow into an operational nightmare is.

● Atomicity
○ Every step progresses a ticket or has no effect

● Automatic failure isolation
○ A failing ticket is automatically moved onto other hardware until it’s 

programmatically determined to be the source of failure
● Resilience to failure

○ All worker components are ephemeral
○ Work continues as far as it can, then sits patiently until missing 

services return without needing a manual “retry”
● Graceful degradation

○ Services are isolated by responsibility
○ You can still see your ticket and its artifacts, even if we lose 

everything but the web interface, ticket system, and Swift



June/July - CI Airline (UCE-0)

Developer 
Desktop Core CI

Lander

Branch / 
Source 
Builder

Image 
Builder

Test Runner 
(cloud)

Publisher

Ticket 
System

CLI

Web UI
web 

browser

Launchpad 
PPA

Test Runner 
(mako)

Release 
Archive



June/July



List of requirements that have been completed

● CI Train on Prodstack
● Inline comments in Launchpad MPs
● Operational response improvements

○ Instant text message alerting of operational problems
○ Vanguard shifts provide a single POC for the CI team stakeholders

● Operational stability improvements
○ Nagios checks, Landscape, ksplice, centralised auth, centralised DNS, etc
○ Growing consistency in our servers (OpenID auth, single Jenkins version)

● Testing of Oxide (chrome content API) on Prodstack
● Kernel team backlog (health check, power, suspend blocker, etc)
● Test time improvements through parallelisation (~4:10 -> ~1:50)



14.10 Goals

● Deprecate the Train
● Build the emulator into our core process
● Move towards a continuous delivery model for CI 

development; high velocity without sacrificing quality
● Allow stakeholders to start experimenting with 

tomorrow’s tools today
● No poisoned tickets or lost time to CI
● Deep metrics into both the functional and human side 

of the CI process
● Drop-in scale out of many different hardware profiles 

(plug in a phone -> done)
● Get all non-testbed hardware out of the Lab and onto 

Prodstack (or IS-managed)



Testability Requirements

Unit testing
● Comprehensive unit test suite gating every merge

Integration testing
● Growing set of full-deployment integration tests running four times per 

day on trunk
● End-to-end ticket integration test in progress

In-production testing
● Some basic Nagios checks
● Nagios suite growing to cover deeper exercising of the Airline
● Production metrics support landing before Malta

In-production chaos testing
● Plan to prove we can recover from a wedged phone by sending a malicious 

ticket to production once a day



Risks and challenges

● Emulator gaps
○ We don’t yet have a complete picture of where the emulator is not a 

suitable replacement for a physical phone
○ Need to always finish testing on the phone to catch emulator bugs

● Unknowns in MAAS
○ We’re the first team to try to use it like this

● Nested KVM
○ We’re going to use MAAS to manage x86 Touch emulators on real 

hardware. Think of it as a cloud of virtual Touch devices
● Prodstack deployment

○ Need to mentally transition from having shell access to all services to 
building services that report problems well and collect sufficient 
debugging information


